اثر استفاده از آرد پوست بادام و مقوای کهنه بازیافتی بر ویژگی‌های بریکت تولیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار گروه صنایع خمیر و کاغذ، دانشکده مهندسی چوب و کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

10.22034/ijwp.2023.2009726.1625

چکیده

افزایش فعالیت‌های صنعتی سبب افزایش تقاضا به منابع انرژی شده‌‌‌است. استفاده از منابع انرژی موجود (عمدتا از نوع سوخت‌های فسیلی) خسارات فراوان به محیط زیست وارد می‌کند. لذا یافتن جایگزین مناسب برای سوخت‌های فسیلی امری ضروری است. یکی از منابع جایگزین مناسب برای سوخت‌های فسیلی، زیست‌توده لیگنوسلولزی است. در این راستا، لازم است با استفاده از روش‌های مناسب تغییراتی در زیست‌توده خام ایجاد و آن‌ها را جهت مصارف تامین انرژی آماده‌سازی کرد. یکی از این روش‌ها، تبدیل مواد خام زیست‌توده به بریکت‌های سوختی است. در تحقیق حاضر، تاثیر استفاده از آرد پوست بادام و مقوای کهنه بازیافتی در تولید بریکت سوختی بررسی شد. نتایج تحقیق حاضر نشان داد که تیمار A2 (100 درصد مقوای کهنه بازیافتی) دارای بیش‌ترین مقدار دانسیته، مقاومت فشاری و خاکستر بود (به‌ترتیب برابر g/cm319/1، N/mm 94/178 و 4/18 درصد). تیمار A1 (100 درصد آرد پوست بادام) دارای بیش‌ترین مقدار مواد فرار و نرخ پایداری سوخت بود (به‌ترتیب برابر با 48/79 درصد و g/min 67/3 ). در نمونه شاهد (100 درصد آرد چوب)، بیش‌ترین مقدار ارزش حرارتی (MJ/kg 53/20) مشاهده شد.

کلیدواژه‌ها

موضوعات


[1] Sansaniwal, S. K., Pal, K., Rosen, M. A. and Tyagi, S. K., 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and sustainable energy reviews, 72, 363-384.
[2] Tursi, A. 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962.
[3] United Nation Environment Programme. Emissions Gap Report. 2019. Available online: https://www. unenvironment.org/resources/emissions-gap-report-2019.
[4] Tumuluru, J. S., Wright, C. T., Hess, J. R. and Kenney, K. L., 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5(6), 683-707.
[5] Baqir, M., Kothari, R. and Singh, R. P., 2019. Fuel wood consumption, and its influence on forest biomass carbon stock and emission of carbon dioxide. A case study of Kahinaur, district Mau, Uttar Pradesh, India. Biofuels, 10(1), 145-154.
[6] Kumar, D. and Singh, B. 2019. Role of biomass supply chain management in sustainable bioenergy production. Biofuels, 10(1), 109-119.
[7] Geyer, W., 2007. Biomass for energy in Europe and the United States. In National Convention of the Society of American Foresters.
[8] Asresu, A. T., 2017. Biomass briquetting: Opportunities for the transformation of traditional biomass energy in Ethiopia. J. Energy Technol. Policy, 7, 46-54.
[9] Ahiataku-Togobo, W. and Ofosu-Ahenkorah, A., 2009. Bioenergy policy implementation in Ghana. In COMPETE international conference (Vol. 26, p. 28).
[10] Mwakubo, S., Mutua, J., Ikiara, M. and Aligula, E. 2007. Discussion Paper No. 74 of 2007 on Strategies for Securing Energy Supply in Kenya.
[11] Agbro, E. B. and Ogie, N. A. 2012. A comprehensive review of biomass resources and biofuel production potential in Nigeria. Research journal in engineering and applied sciences, 1(3), 149-155.
[12] Trubetskaya, A., Leahy, J. J., Yazhenskikh, E., Müller, M., Layden, P., Johnson, R. and Monaghan, R. F., 2019. Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 171, 853-865.
[13] Maninder, R. S. K. and Grover, S., 2012. Using agricultural residues as a biomass briquetting: an alternative source of energy. IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN, 2278-1676.
[14] Eriksson, S. and Prior, M., 1990. The briquetting of agricultural wastes for fuel (No. 11). Food and Agriculture Organization of the United Nations.
[15] Tumuluru, J. S., Tabil, L. G., Song, Y., Iroba, K. L. and Meda, V., 2015. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy research, 8, 388-401.
[16] Ahmed, S. A., Kumari, A. and Mandavgane, K., 2014. A Review on Briquettes as an Alternative Fuel. Int. J. Innov. Eng. Technol, 3(6).
[17] Tumuluru, J. S. and Wright, C. T., 2010. A review on biomass densification technologie for energy application.
[18] Tiwari, C., & Beck, S. 2011. Producing fuel briquettes from sugarcane waste. EWB-UK National Research & Education Journal, 220-550.
[19] Kristoferson, L.A. and Bokalders, V., 1986. Renewable Energy Technologies-Their Applications in Developing Countries; Pergamon Press: Oxford, UK,; p. 319.
[20] Werther, J., Saenger, M., Hartge, E. U., Ogada, T. and Siagi, Z., 2000. Combustion of agricultural residues. Progress in energy and combustion science, 26(1), 1-27.
[21] Grover, P. D. and Mishra, S. K., 1996. Biomass briquetting: technology and practices. Regional wood energy development program in Asia. Field document, (46).
[22] Muazu, R. I. and Stegemann, J. A., 2017. Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel, 194, 339-347.
[23] Sette Jr, C. R., Hansted, A. L. S., Novaes, E., e Lima, P. A. F., Rodrigues, A. C., de Souza Santos, D. R. and Yamaji, F. M., 2018. Energy enhancement of the eucalyptus bark by briquette production. Industrial crops and products, 122, 209-213.
[24] Brunerová, A., Roubík, H., Brožek, M., Herák, D., Šleger, V. and Mazancová, J., 2017. Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies, 10(12), 2119.
[25] Onukak, I. E., Mohammed-Dabo, I. A., Ameh, A. O., Okoduwa, S. I. and Fasanya, O. O., 2017. Production and characterization of biomass briquettes from tannery solid waste. Recycling, 2(4), 17.
[26] Fengmin, L. and Mingquan, Z., 2011. Technological parameters of biomass briquetting of macrophytes in Nansi Lake. Energy Procedia, 5, 2449-2454.
[27] Brožek, M., 2015. Evaluation of selected properties of briquettes from recovered paper and board. Research in Agricultural Engineering, 61(2), 66-71.
[28] Ebringerová, A., Hromádková, Z., Košt’álová, Z. and Sasinková, V., 2008. Chemical valorization of agricultural by-products: isolation and characterization of xylan-based antioxidants from almond shell biomass. BioResources, 3(1), 60-70.
[29] Li, X., Liu, Y., Hao, J. and Wang, W., 2018. Study of almond shell characteristics. Materials, 11(9), 1782.
[30] Kaliyan, N. and Morey, R. V., 2009. Factors affecting strength and durability of densified biomass products. Biomass and bioenergy, 33(3), 337-359.
[31] Islam, M. H., Hossain, M. M. and Momin, M. A., 2014. Development of briquette from coir dust and rice husk blend: An alternative energy source. International Journal of Renewable Energy Development, 3(2), 119.
[32] Davies, R. M. and Abolude, D. S., 2013. Ignition and burning rate of water hyacinth briquettes. Journal of Scientific Research and Reports, 2(1), 111-120.
[33] Kong, L., Tian, S., He, C., Du, C., Tu, Y. and Xiong, Y., 2012. Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust. Applied energy, 98, 33-39.
[34] Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A. and Roslan, A. M., 2020. Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustainability, 12(6), 2468.
[35] Rumpf, H., 1962. The strength of granules and agglomerates. Agglomeration, 379-418. Said, N., Bishara, T., García-Maraver, A. and Zamorano, M., 2013. Effect of water washing on the thermal behavior of rice straw. Waste Management, 33(11), 2250-2256.
[36] York, P. and Pilpel, N., 1973. The tensile strength and compression behaviour of lactose, four fatty acids, and their mixtures in relation to tableting. Journal of Pharmacy and Pharmacology, 25, 1-11.
[37] Pietsch, W. B., 1984. Agglomerate bonding and strength. Handbook of powder science and technology, 231-252.
[38] Mani, S., Tabil, L. G. and Sokhansanj, S., 2002, July. Compaction characteristics of some biomass grinds. In AIC 2002 Meeting, CSAE/SCGR Program, Saskatoon, Saskatchewan (pp. 14-17).
[39] Adapa, P. K., Tabil, L. G., Schoenau, G. J. and Sokhansanj, S., 2004. Pelleting characteristics of fractionated sun-cured and dehydrated alfalfa grinds. Applied Engineering in Agriculture, 20(6), 813-820.
[40] Tabil, L. G., 1997, “Binding and Pelleting characteristics of alfalfa” An Unpublished Ph.D diss
[41] Adapa, P. K., Tabil, L. G. and Schoenau, G. J., 2009. Compression characteristics of selected ground agricultural biomass. Agricultural Engineering International: CIGR Journal.
[42] Shyamalee, D., Amarasinghe, A. D. U. S. and Senanayaka, N. S., 2015. Evaluation of different binding materials in forming biomass briquettes with saw dust. International Journal of Scientific and Research Publications, 5(3), 1-8.
[43] Mitchual, S. J., Frimpong-Mensah, K. and Darkwa, N. A., 2013. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. International Journal of Energy and Environmental Engineering, 4, 1-6.
[44] Lindley, J. A. and Vossoughi, M., 1989. Physical properties of biomass briquets. Transactions of the ASAE, 32(2), 361-0366.
[45] Afra, E., Abyaz, A. and Saraeyan, A., 2021. The production of bagasse biofuel briquettes and the evaluation of natural binders (LNFC, NFC, and lignin) effects on their technical parameters. Journal of Cleaner Production, 278, 123543.
[46] Manyuchi, M. M., Tichapondwa, S. M., Ikhu-Omoregbe, D. I. and Oyekola, O. O., 2016. Process Parameters Affecting the Production of Charcoal Briquettes from Lignocellulose Waste. Lignocellulose, 5(2), 86-93.
[47] DEMIRBAS, A. and Sahin-Demirbas, A. Y. S. E., 2004. Briquetting properties of biomass waste materials. Energy Sources, 26(1), 83-91.
[48] Espuelas, S., Marcelino, S., Echeverría, A. M., Del Castillo, J. M. and Seco, A., 2020. Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel, 278, 118310.
[49] Lela, B., Barišić, M. and Nižetić, S., 2016. Cardboard/sawdust briquettes as biomass fuel: Physical–mechanical and thermal characteristics. Waste management, 47, 236-245.
[50] Dinesha, P., Kumar, S. and Rosen, M. A., 2019. Biomass briquettes as an alternative fuel: A comprehensive review. Energy Technology, 7(5), 1801011.
[51] Kaliyan, N. and Morey, R. V., 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource technology, 101(3), 1082-1090.
[52] Koppejan, J. and Van Loo, S., 2012. The handbook of biomass combustion and co-firing. Routledge.
[53] Zhang, G., Sun, Y. and Xu, Y., 2018. Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews, 82, 477-487.
[54] Reis Portilho, G., Resende de Castro, V., de Cássia Oliveira Carneiro, A., Cola Zanuncio, J., José Vinha Zanuncio, A., Gabriella Surdi, P. and de Oliveira Araújo, S., 2020. Potential of briquette produced with torrefied agroforestry biomass to generate energy. Forests, 11(12), 1272.
[55] Kumar, J. A., Kumar, K. V., Petchimuthu, M., Iyahraja, S. and Kumar, D. V., 2021. Comparative analysis of briquettes obtained from biomass and charcoal. Materials Today: Proceedings, 45, 857-861.
[56] Sotannde, O. A., Oluyege, A. O. and Abah, G. B., 2010. Physical and combustion properties of briquettes from sawdust of Azadirachta indica. Journal of Forestry research, 21, 63-67.
[57] Nazari, M. M., San, C. P. and Atan, N. A., 2019. Combustion performance of biomass composite briquette from rice husk and banana residue. Int. J. Adv. Sci. Eng. Inf. Technol, 9, 455-460.
[58] Ajimotokan, H. A., Ehindero, A. O., Ajao, K. S., Adeleke, A. A., Ikubanni, P. P. and Shuaib-Babata, Y. L., 2019. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African, 6, e00202.
[59] Ismaila, A., Zakari, I. Y., Nasiru, R., Tijjani, B. I., Abdullahi, I. and Garba, N. N., 2013. Investigation on biomass briquettes as energy source in relation to their calorific values and measurement of their total carbon and elemental contents for efficient biofuel utilization. Advances in Applied Science Research, 4(4), 303-309.
[60] Anatasya, A., Umiati, N. A. K. and Subagio, A., 2019. The effect of binding types on the biomass briquette calorific value from cow manure as a solid energy source. In E3S Web of Conferences (Vol. 125, p. 13004). EDP Sciences.
[61] Onukak, I. E., Mohammed-Dabo, I. A., Ameh, A. O., Okoduwa, S. I. and Fasanya, O. O., 2017. Production and characterization of biomass briquettes from tannery solid waste. Recycling, 2(4), 17.
[62] Koppejan, J. and Van Loo, S., 2012. The handbook of biomass combustion and co-firing. Routledge.
[63] Zakari, I. Y., Ismaila, A., Sadiq, U. and Nasiru, R., 2013. Investigation on the effects of addition of binder and particle size on the high calorific value of solid biofuel briquettes. Journal of Natural Sciences Research, 3(12), 30-34.
[64] Mustafa, B. G., Aji, M. M., Yaumi, A. L., Highina, B. K. and Sulaiman, S. I., 2014. Comparative studies on the combustion performance of briquettes produced from selected biomass residues in Maiduguri. World J Energy Sci Eng, 1, 1-8.
[65] Thabuot, M., Pagketanang, T., Panyacharoen, K., Mongkut, P. and Wongwicha, P., 2015. Effect of applied pressure and binder proportion on the fuel properties of holey bio-briquettes. Energy Procedia, 79, 890-895.