تولید بریکت سوختی بدون بایندر از پسماندهای لیگنوسلولزی پالونیا، ساقه ذرت و خمیرکاغذبازیافتی در فشارهای پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشکده مهندسی شیمی و نفت دانشگاه صنعتی شریف

10.22034/ijwp.2023.2007034.1619

چکیده

استفاده از انرژی زیست توده به عنوان یکی از منابع انرژی های تجدیدپذیر، علاوه کاهش مشکلات زیست محیطی و گرمایش جهانی امنیت انرژی را تضمین می کند. بریکت های سوختی از انواع سوخت های جامد زیستی هستند که با استفاده از فرآیندهای ساده متراکم کردن بدست می آیند و نیازی به تیمارهای پیچیده فیزیکوشیمیایی ندارند. در این تحقیق پتانسیل استفاده از پسماندهای لیگنوسلولزی مانند پالونیا، ساقه ذرت و خمیرکاغذبازیافتی جهت تولید بریکت سوختی بدون بایندر در فشارهای پایین 9 ، 18 و 27 مگاپاسکال در دو سطح دمایی 75 و 100 درجه سانتی گراد بررسی شد. نتایج امکان پذیری تولید بریکت سوختی از سه ماده لیگنوسلولزی با ویژگی های فیزیکی و مکانیکی مناسب را تایید کرد. برای بریکت خمیرکاغذ بازیافتی دانسیته و مقاومت بیشتری در فشارهای پایین بدست آمد در حالی که پالونیا و ساقه ذرت نیاز به سطوح بالاتر فشار، دما و زمان جهت دستیابی به دانسیته و مقاومت فشاری مطلوب نسبت به خمیرکاغذ بازیافتی داشتند.

کلیدواژه‌ها

موضوعات


[1] IRENA (2023), World Energy Transitions Outlook 2023: 1.5°C Pathway, Volume 1, International Renewable Energy Agency, Abu Dha.
[2] Zakeri, B., Paulavets, K., Barreto-Gomez, L., Echeverri, L. G., Pachauri, S and Boza, B.,2022. Pandemic, war, and global energy transitions. Energies, 15(17), pp6114.. https://doi.org/10.3390/en15176114.
[3] Amiri, M., Najafi, A., 2016. Electric power plant with biomass solid fuel and determining the quality of cotton stem samples. Iranian Journal of Energy, 19(2).  (In Persian).
[4] IEA (2022), Bioenergy, IEA, Paris https://www.iea.org/reports/bioenergy, License: CC BY 4.0
[5] Kpalo, S.Y., Zainuddin, M. F., Manaf, L. A and Roslan, A. M., 2020. Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustainability, 12(6), pp2468.. https://doi.org/10.3390/su12062468.
[6] Kurchania, A., 2012. Biomass energy, in Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer. pp. 91-122. https://doi.org/10.1007/978-3-642-28418-2_2.
[7] Hassan Abassi., 2000. Investigation of the growth and adaptation of Paulonia Fortunei. National Conference on Northern Forest Management and Sustainable Development. (In Persian). 
[8] Gug, J., Cacciola, D and Sobkowicz, M.J.,2014. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Management, 35, pp. 283-292. https://doi.org/10.1016/j.wasman.2014.09.031.
[9] Li, Y and Liu, H., 2000. High-pressure binderless compaction of waste paper to form useful fuel. Fuel processing technology, 67(1), pp. 11-21. http://dx.doi.org/10.1016/S0378-3820(00)00092-8.
[10] Tabil, L., Adapa, P and Kashaninejad, M., 2011. Biomass feedstock pre-processing—part 2: densification. Biofuel’s Engineering Process Technology, 19, pp. 439-446. http://dx.doi.org/10.5772/18495.
[11] Chen, T., Jia, H., Zhang, S., Sun, X., Song, Y and Yuan, H., 2020. Optimization of cold pressing process parameters of chopped corn straws for fuel. Energies, 13(3), pp652.. http://dx.doi.org/10.3390/en13030652.
[12] Kaliyan, N and Morey, R.V., 2009. Factors affecting strength and durability of densified biomass products. Biomass and bioenergy, 33(3), pp. 337-359. http://dx.doi.org/10.1016/j.biombioe.2008.08.005.
[13] Kaliyan, N and Morey, R.V., 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource technology 101(3), pp.1082-1090. https://doi.org/10.1016/j.biortech.2009.08.064.
[14] Li, H., Liu, X., Legros, R., Bi, X., Lim, J and Sokhansanj, S., 2012. Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, pp. 680-685. https://doi.org/10.1016/j.apenergy.2012.01.002.
[15] Zhou, W., Gong, Z., Zhang, L., Liu, y., Yan, J and Zhao, m., 2017. Feasibility of lipid production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources, 12(3), pp. 5249-5263. http://dx.doi.org/10.15376/biores.12.3.5249-5263.
[16] Navalta, C.J.L.G., Banaag, K., Von Adrian, O., Go, A., Cabatingan, L and Ju, Y., 2020. Solid fuel from Co-briquetting of sugarcane bagasse and rice bran. Renewable Energy, 147, pp. 1941-1958. http://dx.doi.org/10.1016/j.renene.2019.09.129.
[17] Mani, S., Tabil, L.G and Sokhansanj, S., 2006. Specific energy requirement for compacting corn stover. Bioresource Technology, 97(12), pp. 1420-1426. http://dx.doi.org/10.1016/j.biortech.2005.06.019.
[18] Demirel, B., 2023. Determination of solid biofuel properties of hazelnut husk briquettes obtained at different compaction pressures. Biomass Conversion and Biorefinery, pp. 1-12. http://dx.doi.org/10.1007/s13399-023-04431-2.
[19] Guo, L., Wang, D., Tabil, L and Wang., G., 2016. Compression and relaxation properties of selected biomass for briquetting. Biosystems Engineering, 148, pp. 101-110. http://dx.doi.org/10.1016/j.biosystemseng.2016.05.009.
[20] Gurdil., G and Demirel, B., 2020. Effect of moisture content, particle size and pressure on some briquetting properties of hazelnut residues. Anadolu Tarım Bilimleri Dergisi, 35(3), pp. 330- 338. https://doi.org/10.7161/omuanajas.736851.
[21] Martinez, C.L.M., Sermyagina, E., Carneiro, A. d. C. O., Vakkilainen, E and Cardosoet., M., 2019. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass and Bioenergy, 123, pp. 70-77. http://dx.doi.org/10.1016/j.biombioe.2019.02.013.
[22] Brozek, M., 2016. The effect of moisture of the raw material on the properties briquettes for energy use. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(5), pp.1453-1458. http://dx.doi.org/10.11118/actaun201664051453.
[23] Mitchual, S.J., Frimpong-Mensah, K and Darkwa, N.A., 2013. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. International Journal of Energy and Environmental Engineering, 4, pp. 1-6. http://dx.doi.org/10.1186/2251-6832-4-30.
[24] Wang, Y., Wu, K and Sun, Y., 2018. Effects of raw material particle size on the briquetting process of rice straw. Journal of the Energy Institute, 91(1), pp. 153-162. http://dx.doi.org/10.1016/j.joei.2016.09.002.
[25] Mitchual, S.J., Frimpong-Mensah, K and Darkwa, N.A., 2014. Relationship between physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from maize cobs and sawdust. Journal of Sustainable Bioenergy Systems, 2014. http://dx.doi.org/10.4236/jsbs.2014.41005.
[26] Deutsches Pelletinstitut GmbH, EN Plus Briquettes Manual for the Certification of Wood Briquettes for the End-User Market According to European Standard EN, 2013.
[27] Kong, L., Tian, S., He, C., Du, C., Tu, Y and Xiong, Y., 2012. Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust. Applied energy, 98, pp. 33-39. http://dx.doi.org/10.1016/j.apenergy.2012.02.068.
[28] Demirel, C., Gurdil, G. A. K., Kabutey, A and Herak, D., 2020. Effects of forces, particle sizes, and moisture contents on mechanical behaviour of densified briquettes from ground sunflower stalks and hazelnut husks. Energies, 13(10), pp. 2542.  http://dx.doi.org/10.3390/en13102542.