توان نگه‌داری و مقاومت برش جانبی اتصال دهنده میخ در چوب سرو (Cupressus arizonica) تیمار شده با مواد حفاظتی ACC و ACQ با تأکید بر استفاده در NLT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشکده منابع طبیعی دانشگاه تهران

3 گروه مهندسی علوم و صنایع چوب و کاغذ

10.22034/ijwp.2023.1986465.1579

چکیده

پانل چوب لایه‌های درز شده با میخ (NLT) جزء فرآورده‌های مهندسی شده چوبی هستند که کاربرد ساختمانی فراوان دارند. با توجه به ماهیت ساخت NLT این محصول تمایل بالا به جذب رطوبت داشته و سرعت دفع رطوبت از آنها نیز به آهستگی رخ می‌دهد. بنابراین حفاظت این فرآورده در برابر رطوبت و عوامل مخرب امر ضروری به نظر می‌رسد. در این پژوهش تاثیر مواد حفاظتی ACC و ACQ بر عملکرد توان نگه‌داری و برش جانبی اتصال دهنده میخ در گونه سرو (Cupressus arizonica) با تأکید بر استفاده در لایه‌های درز شده با میخ (NLT) مورد بررسی قرار گرفته است. برای تیمار لایه‌ها از محلول‌های حفاظتی با غلظت 3 درصد برای دستیابی به حداقل ماندگاری مورد نیاز برای مصارف در تماس با زمین طبق الزامات AWPA استفاده شد. آزمون‌های توان نگه‌داری، بار برش جانبی میخ به ترتیب با استاندارد NDS و فرمول‌های حد تسلیم مطابقت داده شدند. نتایج نشان داده‌اند که مواد حفاظتی ACC و ACQ اثر نامطلوبی بر مقاومت‌های مکانیکی آزمون شده در این پژوهش ندارند و همین امر باعث می‌شود محدودیتی برای ساخت NLT از گونه‌‌‌های اشباع شده با این مواد حفاظتی در گونه سرو وجود نداشته باشد. همچنین نتایج نشان داده‌اند که همخوانی خوبی بین مقاومت پیش بینی شده با معادلات ارائه شده در NDS و نتایج تجربی وجود داشته است. مد شکست IIIs در نمونه‌های اشباع شده و نمونه شاهد مشاهده شده است.

کلیدواژه‌ها

موضوعات


[1] Esteves, B., Nunes, L. and Pereira, H., 2011. Properties of furfurylated wood (Pinus pinaster). European Journal of Wood and Wood Products, 69(4): 521-525.
[2] Harte, A.M., 2017. Mass timber–the emergence of a modern construction material. Journal of Structural Integrity and Maintenance, 2(3):121-132.
[3] Council, B.S.L., Nail-Laminated Timber: US Design & Construction Guide. I. 2018. 142p.
[4] Teng, Q., Que, Z., Li, Z. and Zhang X. 2018. Effect of installed angle on the withdrawal capacity of self-tapping screws and nails; Proceedings of the World Conference of Timber Engineering. August 20–23. Seoul, Korea.
[5] Ross, R.J. 2010. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190. 509 p.
[6] Kiliç, M., Burdurlu, E., İlker, U.S.T.A., Berker, U.Ö. and Oduncu, P. 2007. Comparative analysis of the nail and screw withdrawal resistances of fir (Abies Mill.), cherry (Prunus Avium L.), walnut (Juglans Regia L.) and oak (Quercus L.) wood. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 2(2): 61-75.
[7] Helinska-Raczkowska, L. 1993. Withdrawal Resistance of Nails from Juvenile Wood of Scots Pine. Sylwan, 137(9): 31-36.
[8] Yermán, L., Ottenhaus, L.M., Montoya, C. and Morrell, J.J. 2021. Effect of repeated wetting and drying on withdrawal capacity and corrosion of nails in treated and untreated timber. Construction and Building Materials, 284: 122878.
[9] Rammer, D.R. 2004. Review of end grain nail withdrawal research. US Department of Agriculture, Forest Service, Forest Products Laboratory. 151.
[10] Chen, G., Zhang, E., Wu, D., Wang, C. and Zhou, T., 2022. Withdrawal behaviour of mechanical fasteners on laminated bamboo lumber. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 27: 1-11.
[11] Abdoli, F., Rashidi, M., Rostampour-Haftkhani, A., Layeghi, M. and Ebrahimi, G. 2022. Withdrawal Performance of Nails and Screws in Cross-Laminated Timber (CLT) Made of Poplar (Populus alba) and Fir (Abies alba). Polymers, 14(15): 3129.
[12] Abdoli, F., Rashidi, M., Rostampour-Haftkhani, A., Layeghi, M. and Ebrahimi, G. 2023. Effects of fastener type, end distance, layer arrangement, and panel strength direction on lateral resistance of single shear lap joints in cross-laminated timber (CLT). Case Studies in Construction Materials, 18, p.e01727.
[13] Dalvand, M., Pourtahmasi, K. and Ebrahimi, G. 2018. Investigation of the relations between screw diameter and pilot hole diameter with withdrawal resistance in LVL for establishing regression model. Iranian Journal of Wood and Paper Industries, 8(4): 549-561. (In Persian).
[14] Maleki, S., Dalvand, M. and Gholamian, H. 2013. Determination of Screw and Nail Withdrawal Strengths in Parallel and Perpendicular to Grain of some Hardwoods of Iran. Iranian Journal of Wood and Paper Industries, 3(2):171-180. (In Persian).
[15] Taşçioğlu, C., Akçay, Ç., Yalçin, M. and Şahin, H.I. 2014. Effects of post-treatment with CA and CCA on screw withdrawal resistance of wood based composites. Wood Research, 59(2): 343-350.
 [16] Yang, T.H., Lin, C.H., Wang, S.Y. and Lin, F.C. 2012. Effects of ACQ preservative treatment on the mechanical properties of hardwood glulam. European Journal of Wood and Wood Products, 70(5): 557-564.
[17] Yildiz, U.C., Temiz, A., Gezer, E.D. and Yildiz, S. 2004. Effects of the wood preservatives on mechanical properties of yellow pine (Pinus sylvestris L.) wood. Building and Environment, 39(9): 1071-1075.
[18] National design specification for wood construction: recommended practice for structural design, National Forest Products Association, NDS, 2015.
[19] Standard test methods for small clear specimens of timber. American Society of Testing and Materials, Annual Book of ASTM Standards, D 1761-88, 2003.
[20] Subcommittee, A.S.T.M., 2003. Standard test method for determining bending yield moment of nails. American Society of Testing and Materials, Annual Book of ASTM Standards, F 1575-08.
[21] Subcommittee, A.S.T.M., 2003. Standard test method for determining bending yield moment of nails. American Society of Testing and Materials, Annual Book of ASTM Standards, D 5764-97a.
[22] American Wood Protection Association Standards. Standard for waterborne preservatives, P5- 00, 2000.
[23] Rammer, D.R. and Zelinka, S.L. 2015. Withdrawal strength and bending yield strength of stainless-steel nails. Journal of Structural Engineering, 141(5): 1-7.
[24] Rammer, D.R., Winistorfer, S.G. and Bender, D.A. 2001. Withdrawal strength of threaded nails. Journal of structural engineering, 127(4): 442-449.
[25] Morris, H., Sinha, A. and Miyamoto, B.T. 2018. Lateral Connections and Withdrawal Capacity of Western Juniper. Wood and Fiber Science, 50(1): 1-8.
[26] Taj, M.A., Kazemi Najafi, S. and Ebrahimi, G. 2009. Withdrawal and lateral resistance of wood screw in beech, hornbeam and poplar. European Journal of Wood and Wood Products, 67(2): 135-140.
[27] Sinha, A., Gupta, R. and Nairn, J.A. 2011. Thermal degradation of lateral yield strength of nailed wood connections. Journal of materials in civil engineering, 23(6): 812-822.
[1] Esteves, B., Nunes, L. and Pereira, H., 2011. Properties of furfurylated wood (Pinus pinaster). European Journal of Wood and Wood Products, 69(4): 521-525.
[2] Harte, A.M., 2017. Mass timber–the emergence of a modern construction material. Journal of Structural Integrity and Maintenance, 2(3):121-132.
[3] Council, B.S.L., Nail-Laminated Timber: US Design & Construction Guide. I. 2018. 142p.
[4] Teng, Q., Que, Z., Li, Z. and Zhang X. 2018. Effect of installed angle on the withdrawal capacity of self-tapping screws and nails; Proceedings of the World Conference of Timber Engineering. August 20–23. Seoul, Korea.
[5] Ross, R.J. 2010. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190. 509 p.
[6] Kiliç, M., Burdurlu, E., İlker, U.S.T.A., Berker, U.Ö. and Oduncu, P. 2007. Comparative analysis of the nail and screw withdrawal resistances of fir (Abies Mill.), cherry (Prunus Avium L.), walnut (Juglans Regia L.) and oak (Quercus L.) wood. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 2(2): 61-75.
[7] Helinska-Raczkowska, L. 1993. Withdrawal Resistance of Nails from Juvenile Wood of Scots Pine. Sylwan, 137(9): 31-36.
[8] Yermán, L., Ottenhaus, L.M., Montoya, C. and Morrell, J.J. 2021. Effect of repeated wetting and drying on withdrawal capacity and corrosion of nails in treated and untreated timber. Construction and Building Materials, 284: 122878.
[9] Rammer, D.R. 2004. Review of end grain nail withdrawal research. US Department of Agriculture, Forest Service, Forest Products Laboratory. 151.
[10] Chen, G., Zhang, E., Wu, D., Wang, C. and Zhou, T., 2022. Withdrawal behaviour of mechanical fasteners on laminated bamboo lumber. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 27: 1-11.
[11] Abdoli, F., Rashidi, M., Rostampour-Haftkhani, A., Layeghi, M. and Ebrahimi, G. 2022. Withdrawal Performance of Nails and Screws in Cross-Laminated Timber (CLT) Made of Poplar (Populus alba) and Fir (Abies alba). Polymers, 14(15): 3129.
[12] Abdoli, F., Rashidi, M., Rostampour-Haftkhani, A., Layeghi, M. and Ebrahimi, G. 2023. Effects of fastener type, end distance, layer arrangement, and panel strength direction on lateral resistance of single shear lap joints in cross-laminated timber (CLT). Case Studies in Construction Materials, 18, p.e01727.
[13] Dalvand, M., Pourtahmasi, K. and Ebrahimi, G. 2018. Investigation of the relations between screw diameter and pilot hole diameter with withdrawal resistance in LVL for establishing regression model. Iranian Journal of Wood and Paper Industries, 8(4): 549-561. (In Persian).
[14] Maleki, S., Dalvand, M. and Gholamian, H. 2013. Determination of Screw and Nail Withdrawal Strengths in Parallel and Perpendicular to Grain of some Hardwoods of Iran. Iranian Journal of Wood and Paper Industries, 3(2):171-180. (In Persian).
[15] Taşçioğlu, C., Akçay, Ç., Yalçin, M. and Şahin, H.I. 2014. Effects of post-treatment with CA and CCA on screw withdrawal resistance of wood based composites. Wood Research, 59(2): 343-350.
 [16] Yang, T.H., Lin, C.H., Wang, S.Y. and Lin, F.C. 2012. Effects of ACQ preservative treatment on the mechanical properties of hardwood glulam. European Journal of Wood and Wood Products, 70(5): 557-564.
[17] Yildiz, U.C., Temiz, A., Gezer, E.D. and Yildiz, S. 2004. Effects of the wood preservatives on mechanical properties of yellow pine (Pinus sylvestris L.) wood. Building and Environment, 39(9): 1071-1075.
[18] National design specification for wood construction: recommended practice for structural design, National Forest Products Association, NDS, 2015.
[19] Standard test methods for small clear specimens of timber. American Society of Testing and Materials, Annual Book of ASTM Standards, D 1761-88, 2003.
[20] Subcommittee, A.S.T.M., 2003. Standard test method for determining bending yield moment of nails. American Society of Testing and Materials, Annual Book of ASTM Standards, F 1575-08.
[21] Subcommittee, A.S.T.M., 2003. Standard test method for determining bending yield moment of nails. American Society of Testing and Materials, Annual Book of ASTM Standards, D 5764-97a.
[22] American Wood Protection Association Standards. Standard for waterborne preservatives, P5- 00, 2000.
[23] Rammer, D.R. and Zelinka, S.L. 2015. Withdrawal strength and bending yield strength of stainless-steel nails. Journal of Structural Engineering, 141(5): 1-7.
[24] Rammer, D.R., Winistorfer, S.G. and Bender, D.A. 2001. Withdrawal strength of threaded nails. Journal of structural engineering, 127(4): 442-449.
[25] Morris, H., Sinha, A. and Miyamoto, B.T. 2018. Lateral Connections and Withdrawal Capacity of Western Juniper. Wood and Fiber Science, 50(1): 1-8.
[26] Taj, M.A., Kazemi Najafi, S. and Ebrahimi, G. 2009. Withdrawal and lateral resistance of wood screw in beech, hornbeam and poplar. European Journal of Wood and Wood Products, 67(2): 135-140.
[27] Sinha, A., Gupta, R. and Nairn, J.A. 2011. Thermal degradation of lateral yield strength of nailed wood connections. Journal of materials in civil engineering, 23(6): 812-822.