اثر نانو اکسید قلع و تیمار گرمایی بر مقاومت به پوسیدگی و خواص فیزیکی چوب گونه راش (Fagus orientalis

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانش آموخته کارشناسی ارشد، گروه مهندسی چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 دانشجوی کارشناسی ارشد گروه مهندسی چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

این تحقیق با هدف بررسی اثر نانوذرات‌ اکسید قلع و تیمار‌گرمایی بر مقاومت به پوسیدگی و خواص فیزیکی چوب راش ایرانی انجام‌شد. نمونه‌های فیزیکی و زیستی به ترتیب بر اساس استانداردهای EN-113 و ASTM-D4446-05 تهیه گردیدند. نمونه‌ها به چهار گروه شاهد، اشباع با نانوذرات ‌اکسید قلع، گرمایی و نانوگرمایی دسته‌بندی ‌شدند. اشباع با محلول نانو اکسید قلع در غلظت ppm 5000، به روش سلول پر انجام‌شد. سپس، نمونه‌ها در سه سطح دمایی 160،140 و 180 درجه سانتی‌گراد در مدت‌زمان 2 و 4 ساعت تیمارگرمایی شدند. بر اساس نتایج، با افزایش زمان و دما، مقاومت در برابر پوسیدگی افزایش یافت. کمترین کاهش وزن ناشی از پوسیدگی در نمونه‌های نانوگرمایی تحت دمای 180 درجه سانتی‌گراد در مدت 4 ساعت با 3/46 درصد تنزل در مقایسه با شاهد، با بالاترین کاهش وزن، اندازه‌گیری‌شد. در سطح نانوگرمایی بالاترین مقدار جذب آب مشاهده‌شد که با سطوح شاهد و نانو اختلاف معنی‌داری نشان نداد. افزایش دما حین تیمارگرمایی به کاهش معنی‌دار جذب آب منتهی شد به‌طوری‌که جذب آب طی طولانی‌ترین زمان غوطه‌وری در نمونه‌های تیمارگرمایی تحت دمای ˚C180 و به مدت 4 ساعت، 8/47 درصد تنزل یافت. کمترین واکشیدگی حجمی در نمونه‌های نانوگرمایی تیمار شده در دمای 180 درجه سانتی‌گراد به مدت 2 ساعت اندازه‌گیری ‌شد. واکشیدگی حجم نمونه‌های نانو شده نیز پس از 2 و 24 ساعت غوطه‌وری به ترتیب 70/8 و 76/22 درصد در مقایسه با نمونه شاهد کاهش یافت.

کلیدواژه‌ها


[1]     Wallenberger, F.T. and Weston, N., 2004. Natural Fibers, Plastic and Composites, 1st Ed. Springer, Berlin, 392 p.
[2]     Yildiz, S. and Gümüskaya, E., 2007. The effect of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment, 42(4): 62-67.
[3]     Hill, C., 2006. Wood Modification Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd. ISBN: 0-470-02172-1; 239 pp.
[4]     Abe, K. and Yamamoto, H., 2006. Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment.Wood Science, Vol. 52: 107-110.
[5]     Ghorbani, M., Akhtari, M., Taghiyari, H.R., Kalantari, A., 2012. Effects of silver and zinc-oxide nanoparticles on gas and liquid permeability of heat-treated Paulownia wood.  Austrian Journal of Forest Science, 129(1): 106 – 123.
[6]     Narashimha, G., Praveen, B., Mallikarjuna, K., Deva, Prasad., Raju, B., 2011. Mushrooms (Agaricus bisporus) mediated biosynthesis of silver nanoparticles, characterization and their antimicrobial activity. International Journal of Nano Dimension, 2(1): 29 – 36.
[7]     Kang, H.U., Kim, S.H., Oh, J .M. 2006. Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Experimental Heat Transfer, 19: 181-191.
[8]     Taghiyari, H.R., Rangavar, H., Farajpour Bibalan, O., 2011.  Nano-Silver in Particleboard. BioResources, 6(4): 4067 – 4075.  
[9]     Kartal, S.N., Green, F., Clausen, C.A., 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites?. .International biodeterioration and biodegradation, 63: 490-495.
[10]  Clausen, C.A., 2007. Nanotechnology: implication for the wood preservation industry, the 38th annual meeting of IRG, 10p.
[11]  Leach, R. M. and Zhang, J., 2005. Micronized wood preservative formulation. World Patent, 2005104841, 26.
[12]  Chen, R., Chen, D, and Li, H., 2006. Wood preservative containing copper and ammonium compounds, Chinese Patent 1883899, 10.
[13]  Devi, R. and Maji, T.K., 2012. Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites.  Wood Science and Technology, 46(6): 1151-1168.
[14]  Zahedsheijani, R. and Gholamiyan, H., 2010. The Potential Use of Nanozycosil and Sodium Montmorillonite (NaMMT) nanoclay to decrease Water Absorption in MDF. Iranian Journal of Wood and Paper Industries, 1(2): 69-81, (In Persian).
[15]  Yousefi, M., Tavakolinia, F. and Hassanzadeh, S.M., 2011. Comparison of antibacterial activities of di- and tri-tin (IV) carboxylate complexes. International Conference on Biology, Environment and Chemistry, Singapoore.
[16]  Soneij, N.J., Penninks, A.H., Seinen, W., 1987.Biological Activity of Organotin Compounds--An Overview. Environmental research, 44: 335-353.
[17]  Stamm, A.J., Baechler, R.H., 1960. Decay resistance and dimensional stability of five modified woods. Forest Products Journal, 10: 22-26.
[18]  Kamdem, D.P., Pizzi, A., Jermannaud, A., 2002. Durability of heat-treated wood. Holz Roh Werkst, 60:1-6.
[19]  Kocaefe, D., Poncsak, S., Boluk, Y., 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2):517e37.
[20]  Hakkou, M., Petrissans, M., Gerardin, P., Zoulalian, A., 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability, 91:393-397.
[21]  Sivonen, H., Maunu, S.L., Sundholm, F., Jämsä, S., Viitaniemi, P., 2002. Magnetic resonance studies of thermally modified wood. Holzforschung, 56(6):648–654.
[22]  Nuopponen, M., Vuorinen, T., Jamsa, S., Viitaniemi, P., 2004. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. Journal Wood Chemistry and Technology, 24(1):13-26.
[23]  Matsunaga, H., Kigushi, M. and Evans, P., 2007. Micro-distribution of metals in wood treated with a nano-copper wood preservative. International Research Group on Wood Protection, 7p, Sweden.
[24]  Tjeerdsma, B., and Militz, H., 2005. Chemical changes in hydroheat wood: FTIR analysis of combined hydroheat and dry heat-treated woo. Holz Roh-Werkst, 63: 102-111.
[25]  Boonstra, M., and Tjeerdsma, B., 2006. Chemical analysis of heat-treated softwood. Holz Roh-Werkst,64, 204-211.
[26]  Alén, R., Kotilainen, R., and Zaman, A., 2002. Thermochemical behavior of Norway spruce (Picea abies) at 180-225ºC. Wood science and technology, 36: 163-171.
[27]  Sun, Q., Yu, H., Liu, Y., Li, J., Lu, Y.and Hunt, J.F., 2010. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung, 64: 757-261.
[28]  Hass, P., Wittel, F., McDonald, S.A.,Marone, F., Stampanoni, M., Herrmann, H.J. and Niemzi, P., 2010. Pore space analysis of beech wood: The vessel network. Holzforschung, 64: 639–644.
[29]  Dagu, D., Kose, C., Kartal, S.N. and Edrin, N., 2011. Wood modification of wooden marine piles from the ancient byzantine port of eleutherius/Theodosius, Bioresources, 6(2): 987-1018.
[30]  Matsunaga, H., Kiguchi, M. and Philip, D., 2009. Micro distribution of copper-carbonate and iron oxide, nanoparticles in treated wood. Journal of Nanoparticle Research, 11:1087–1098.