بررسی اثر میزان ماده کف زای شیمیایی و آرد چوب بر ویژگیهای مکانیکی، چگالی و ریخت شناسی چندسازه سبک شده هیبریدی پلی اتیلن سنگین/ اتیلن وینیل استات/آرد چوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی دانشگاه آزاد اسلامی واحد ملایر

2 استادیار دانشگاه آزاد اسلامی واحد ملایر

چکیده

در این تحقیق تأثیر میزان ماده کف‌زای شیمیایی و آرد چوب  بر ویژگیهای مکانیکی، چگالی و ریخت شناسی چندسازه سبک شده هیبریدی پلی اتیلن سنگین/ اتیلن وینیل استات/ آرد چوب مورد بررسی قرار گرفت. برای این منظور، چندسازه‌ها با استفاده از فرآیند اختلاط در یک مخلوط کن داخلی تهیه و سپس به روش تک مرحله‌ای (Batch) فوم شدند. سپس خواص مکانیکی شامل مقاومت خمشی، مدول خمشی و کششی و چگالی اندازه‌گیری شدند. ریخت شناسی نمونه‌ها نیز با عکسبرداری با میکروسکوپ الکترونی(SEM) مورد ارزیابی قرار گرفت. نتایج نشان داد با افزایش میزان آرد چوب، مقاومت خمشی، مدول خمشی و کششی و چگالی افزایش یافت. در حالی‌که با افزایش میزان ماده کف زای شیمیایی و EVA، خواص مکانیکی و چگالی چندسازه‌های فوم شده کاهش یافت. همچنین آرد چوب به عنوان عامل هسته‌گذار عمل کرده و منجر به کاهش اندازه سلولی و افزایش چگالی سلولی گشت. از طرفی، EVA  با افزایش گرانروی مذاب ماتریس پلیمری، نقش مهمی را در فرآیند فوم شدن ایفاء نمود. به گونه‌ای که نمونه‌های دارای میزان EVA بیشتر، دارای بیشترین میزان چگالی سلولی و کمترین اندازه سلولی گشتند.
 

کلیدواژه‌ها


1- Agarwal, B. D., Broutman, L. J., 1980. Analysis and performance of fiber composites, John Willy & Sons. Inc., USA.
2- Ahmad, M., 2004. Thermoplastic microspheres as foaming agent for wood plastic  Composites. In: WPC Conference, Vienna, Austria., pp. 1-12.
3- Baldwin, D. F., Park, C. B., Suh, N. P., 1996., J. Polym. Erg. Sci., 36: 1437.
4- Baldwin, D. F., Park, C. B., Suh, N. P., 1996., J. Polym. Eng. Sci. 36: 1446.

5- Bledzki, A. K.,  Gassan,  J., Zhang, W.,  1999. Impact Properties of Natural Fiber-Reinforced Epoxy Foams, Journal of  Cellular Plastics, 35(6), 550-562.

6- Bledzki, A. K.; Faruk, O., 2002. Microcellular wood fibre reinforced polypropylene composites in an injection moulding process, J. Cell. Polym., 21, 417-429.
7- Bledzki, A. K., Faruk, O., 2002. Soc Plast Eng Annu Tech Conf Tech Pap., 2: 1897.
8- Bledzki, A. K. and O. Faruk., 2005. Effects of the chemical foaming agents, Injection Parameters, and melt- flow index on the microstructure and mechanical properties of microcellular injection molded wood- fiber/ polypropylene composites, Journal of  Applied Polymer Science, 97: 1090-1096.
9- Bledzki, A. K., Zhang, W., Faruk, O., 2005. Microfoaming of flax and wood fibre reinforced polypropylene composites, Holz als Roh- und werkstoff., 63: 30-37.
10- Bledzki, A. K., Faruk, O., 2006. Effect of chemical foaming agent content on cell
morphology and physico-mechanical properties, J. Cellular. Plast., 42: 63-76.
11- Colton, J. S., Suh,  N. P., 1987. The Nucleation of Microcellular Thermoplastic Foam with Additives; Part I: Theoretical Considerations, Polym. Eng. Sci., 27: 485-492.
12- Colton, J. S., Suh, N.P., 1987. Nucleation of Microcellular Foam: Theory and   practice, Polym. Eng. Sci., 27: 500-507.
13- Dalai, S., Wenxiu, C.,  2002. Radiation Effects on HDPE/EVA Blends, Journal of Applied Polymer Science, 86, 553–558.
14- Evaluating Mechanical and Physical properties of wood-plastic composites products, American Society For Testing And Materials. , ASTM Standard, D 790, D 638, 2006.
15- Faker, M., Razavi Aghjeh, M. K., Ghaffari, M., Seyyedi, S. A., 2008. Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends, Europ. Polym, 44: 1834-1842.
16- Faruk, O., Bledzki, A. K., Matuana, L. M., 2007. Microcellular Foamed Wood-Plastic Composites by Different Processes: a Review, Macromol. Mater. Eng., 292: 113–127.
17- Guo, G., Rizvi, M., Park, C. B., Lin, W. S., 2005. Influence of different endothermic foaming agents on microcellular  injection moulded wood fibre reinforced HDPE composites, Journal of Polymer  Composites,  22)8( :162.
18- Guo, G., Wang, K. H., Park, C. B., Kim, Y. S., Li, G., 2007. Effect of nanoparticles on the density reduction and cell morphology of extruded metallocene polyethylene/wood-fiber Nanocomposites, J. Appl. Polym. Sci., 104: 1058-1063.
19- Handbook of plastics testing and failure analysis. Third edition, by Vishu Shah, ASTM Standard, D 1622-03, 2007.
20- Jiang, H. and Kamdem D. P., 2004 .Development of Poly(vinyl chloride)/Wood Composites. Journal of Vinyl & Additive Technology, 10(2): 59-69.
21- Kokta, B.V., and Maladas, D., 1990. Composites of Polyvinyl Chloride wood fibers, Journal of Polymer Plastic Technology, 20 (1-2): 87-118.
22- Li, Q., Matuana, L. M., 2003. Foam extrusion of high density polyethylene/ wood-flour Composites using chemical foaming agent, J. Appl. Polym. Sci., 88: 3139-3150.
23- Martinez,  J., Matias, M.C., Dela ordeu, M.U., Lechung munguia, M. and Gonzalez, S., 2000. Effects of coupling agents on the oxidation and darkening of cellulose materials used reinforcements of thermoplastic matrixs in composites, Polymer Enginering and Science, 40)2: (407-417pp.
24- Matuana, L. M., Park, C. B., Balatinecz, J. J., , 1997. Processing and cell morphology
Relationships for microcellular foamed PVC/wood fiber composites, J. Polym. Eng. Sci., 37(7): 1137-1147.
25- Matuana, L. M.; Park, C. B.; Balatinecz, J.J., 1998. J. Cell. Polym., 17(1).
26- Matuana, L. M., Park, C. B., Balatinecz, J.J., 1998. Cell morphology and property  relationships of microcellular foamed PVC/wood fibre composites, J. Polym. Eng. Sci., 38(11), 1862-1872.
27- Matuana, L. M., 2008. Solid state microcellular foamed poly(lactic acid): Morphology and property characterization, Journal of  Bioresource Technology, 99: 3643-3650.

28- Matuana, L. M.,  Faruk, O., Diaz, C. A., 2009.  Cell morphology of extrusion Foamed poly(lactic acid) using endothermic chemical  foaming agent, Journal of  Bioresource Technology, 100, 5947–5954.

29- Mengeloglu, F., Matuana, L. M., 2001., J. Vinyl Addit Technol., 7, 142.
30- Mengeloglu, F., Matuana, L. M., 2003. Mechanical Properties of Extrusion-Foamed
Rigid PVC/Wood-Flour Cornposites, J. Vinyl Addit Technol., 9(1): 26-31.
31- Oksman, K., and Clemon, C. 1998. Mechanical properties and morphology of impact modified polypropylene-wood flour composites, Journal of Applied Polymer Science, 67(9): 503-1513.
32- Rachtanapun, P., Selke, S. E. M., Matuana, L. M., 2004. Relationship Between Cell Morphology and Impact Strength of Microcellular Foamed High-Density Polyethylene/ Polypropylene Blends. Polym. Eng. Sci., 44(8): 1551-1560.
33- Ramirez-Vargas, E., Navarro-Rodriguez, D., Medellin- Rodriguez, F. J. , Huerta-Martinez, B. M., Lin, J. S., 2000. Morphological and Mechanical Properties of Polypropylene [PP]/Poly(Ethylene Vinyl Acetate) [EVA] Blends. I. Homopolymer PP/EVA Systems. Polym. Eng. Sci., 21(7): 567-586.
34- Ray, S. S., Okamoto,  M., 2003. Polymer/layered silicate nanocomposites, a review from Preparation to processing, Prog. , J. Polym. Sci., 28: 1539-1641.
35- Riahinezhad, M., 2009. Investigation of Foamability and physical and mechanical properties of nanocomposite foams Based on low-density polyethylene(LDPE) and ethylene vinyl acetate(EVA) blends, M. Sc. Thesis, Iran Polymer and petrochemical institute(IPPI), 110 pages.
36- Riahinezhad, M., Ghasemi, I., Karrabi, M., Azizi, H., 2010. An Investigation on the correlation between rheology and morphology of nanocomposite foams Based on low-density polyethylene(LDPE) and ethylene vinyl acetate(EVA) blends, J. Polym. Compos.,  31(10),1808-1816.
37- Rizvi, G. M., Pop-Iliev, R. , Park, C. B., 2002. A Novel System Design for Continuous Processing of Plastic/Wood-Fiber Composite Foams with Improved Cell Morphology, J. Cell. Plast., 38(5): 367-383.
38- Rodrigue, D., Souici, S., Twite-Kabamba, E., 2006. Effect of wood powder on polymer foam nucleation, J. Viny. Addit. Technol., 19-24.
39- Shen, J., Zeng, C., Lee L. J., 2005. Synthesis of polystyrene-carbon nanofibers nanocomposite foams, Polymer, 46: 5218-5224.
40- Stark, N.M., Rowlands, R.E., 2003. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites, Wood and Fiber Science 35(2):167-174.
41- Turng, L. S.,  Yuan, M.,  Kharbas, H., 2003. Seventh International Conference on Wood fiber–Plastic Composites, May 19–20, Madison, Wisconsin, USA, p. 217.
42-Wang, Z., Gao, L., Zhang, G., Chang, L., 2008. Microscopic structure and properties of wood-based foaming composites, J. Front. For. China., 3(3): 375-379.
43- Westerman,  B.,  Stringfellow, P. M., Eccleston, J. A., Harbrow,  D. J., 2001. EVA closed -cell foam and its effect on transmitted forces in mouthguard material, 42:189-191.
44-  Wolcott, M. P., 2003. Characterization fiber composites, Journal of Cellular Plastic,  32 )5(  :449-467pp.
45- Yuan, J., Shi, Sh. Q., 2009. Effect of the Addition of Wood Flours on the Propertiesof
Rigid Polyurethane Foam, J. Appl. Polym. Sci., 113: 2902-2909.
46- Zakaria, Z., 2007. Characterization of polyethylene foam and its structure-properties relationship in shock absorbing application. M. Sc. Dissertation, University Sains Malaysia, Pulau Pinang, Malaysia.
47- Zhang, H., G. M. Rizvi, C. B. Park. 2004. Development of an extrusion system for producing finecelled HDPE/Wood- fibrer composite foams using CO2 as a blowing agent. Journal of Polymers Technology, 23(4): 263-276.
48- Zhang, S., Rodrigue, D., Riedl, B., 2005. Preparation and Morphology of Polypropylene/Wood Flour Composite Foams via Extrusion, J. Polym. Compos., 26: 731-738.
49- Zhou, Z., Zhang, Y., Zhang Y., Yin, N., 2008. Rheological behavior of polypropylene/octavinyl polyhedral oligomeric silsesquioxane composites, J. Polym. Sci., Part B: Polym. Phys., 46: 526-533.
50- Zhu, Z. and Park, C. B., Zong, J.,  2006. Challenges to the formation of nano-cells in foaming processes. SPE ANTEC, 2780-2784.